0040-4039/80/0801-3019802.00/0

Tetrahedron Letters Vol. 21, pp 3019 - 3020 © Pergamon Press Ltd. 1980. Printed in Great Britain

ALKYLATION OF PROTECTED PIPERAZINONE DIANIONS

John M. Kane[#] and Albert A. Carr

Merrell Research Center 2110 E. Galbraith Road, Cincinnati, Ohio 45215

<u>Summary</u>: A new method for the preparation of substituted piperazinones <u>via</u> alkylation of <u>t</u>-bocpiperazinone is presented.

In conjunction with a program directed toward the syntheses of potential central nervous system agents, we required the preparation of several 3-substituted piperazinones. We now wish to report that alkylation of the diamion of <u>t</u>-boc-piperazinone with various electrophiles offers a synthetically convenient entry into not only 3-monosubstituted piperazinones but also 1,3-disubstituted and 1,3,3-trisubstituted derivatives.

Reaction of the parent heterocycle $\underline{1}^1$ and di-<u>t</u>-butyl dicarbonate² readily afforded $\underline{2}$ which was subsequently metalated with 2.2 equivalents of LDA.³ The resulting diamion $\underline{3}$ was reacted with several alkyl halides giving 3-monosubstituted derivatives $\underline{4a-c}$ (Table I). Similarly, employing diphenyl disulfide as an electrophile gave thioether $\underline{4d}$. Sequential reaction of $\underline{3}$ with benzaldehyde and acetyl chloride effected an alkylation/dehydration affording olefin $\underline{4e}$.⁴

As anticipated, diamion 3 could be 1,3-dialkylated; thus, reaction of 3 with <u>p</u>-bexzyloxybenzyl chloride followed by addition of methyl α -bromoacetate gave disubstituted derivative <u>4f</u> which could also be prepared in stepwise fashion by reaction of <u>4c</u> with NaH followed by addition of the α -halo ester. In addition, diamions could be regenerated from the monoalkylated products. For example, metalation of <u>4c</u> with 2.2 equivalents of LDA followed by addition of excess methyl iodide gave trisubstituted derivative <u>4g</u>.

SCHEME I

TABLE 1 ⁵				
Compound	<u>R1</u>	<u>R2</u>	Ra	<u>Yield^a, 🐔</u>
4a 4b	CH 3 CH 2 Ph	н Н	H H	39 43
4c	CH2-0CH2Ph	H	н	79
4d	SPh	н	H	59
4e	-CHPh		н	40
4£	CH2-OCH2 Ph	н	CH ₂ CO ₂ CH ₃	44 (82 ^b)
4g	CH2-OCH2 Ph	CH 3	CH 3	59 [¢]

(a) Yield for the conversion of $\frac{2}{2}$ to $\frac{4}{5}$; (b) Yield for the conversion of $\frac{4c}{4c}$ to $\frac{4f}{5}$; (c) Yield for the conversion of $\frac{4c}{4c}$ to $\frac{4g}{4g}$.

We are currently employing the above methodology in the preparations of potential central nervous system agents which will be reported at a later date.

<u>t-Boc-3-(p-benzylqxybenzyl)-piperazinone (4c)</u>. To a solution of dry diisopropylamine (7.7 ml, 5.5 x 10^{-2} mole) in dry THF (25 ml) at 0°C under argon was added dropwise a hexane solution of <u>n</u>-butyliithium (21 ml, 5.5 x 10^{-2} mole, 2.6 M solution). After <u>ca</u>. 30 min. a solution of <u>2</u> (5.0 g, 2.5 x 10^{-2} mole) in dry THF (125 ml) was added dropwise. After stirring 3 hr at 0° a solution of <u>p</u>-benzyloxybenzyl chloride (6.4 g, 2.7 x 10^{-2} mole) in dry THF (20 ml) was added <u>via</u> syringe. The reaction was stirred at 0° for an additional hour before the cooling bath was removed and the mixture allowed to warm to room temperature. After stirring overnight the reaction was quenched into sat. aqueous NH₄Cl. The aqueous mixture was extracted with EtOAc (3 times) and the combined extracts were washed with sat. aqueous NaCl before being dried over Na₂SO₄. Filtration of the drying agent and evaporation of the filtrate gave an off-white solid which crystallized from ethyl acetate as colorless prisms: 7.8 g (79%), mp 145-147°C; nmr (CDCl₃) 1.31 (s, 9, <u>t</u>-C₄H₉), 2.7-4.3 (m, 6, C₅- and C₆-CH₂, benzylic CH₂), 4.72 (t, 1, C₃-H, J=6.0 Hz), 5.05 (s, 2, OCH₂Ph), 7.02 (q, 4, aromatic), 7.42 (broad s, 6, aromatic, amide NH).

References

- 1) S. R. Aspinall, J. Amer. Chem. Soc., 62, 1202 (1940).
- L. Moroden, A. Hallett, E. Wünsch, O. Keller, and G. Wersin, <u>Hoppe-Seylers Z. Physiol</u>. <u>Chem.</u>, <u>357</u>, 1651 (1976).
- 3) For a review of di- and polyalkali metal derivatives of heterofunctionally substituted organic molecules, see: E. M. Kaiser, J. D. Petty, P. L. A. Knutson, <u>Synthesis</u>, 509 (1977).
- 4) H. Moureu, P. Chovin, and L. Petit, Bull. Soc. Chim. France, 1785 (1956).
- 5) All compounds gave satisfactory analytical and spectral data with the exception of <u>4a</u>, which did not give an acceptable elemental analysis.

(Received in USA 14 April 1980)